THE LOTKA-VOLTERRA MODEL
IN N DIMENSIONS (for any N)
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X ¢ Species 4 (i=1,2,..,N) population

A 5 Growth rate

< % Carrying Capacity function for species 4

@.’5 * Competition coefficients between species 4 and 6

LOTKA-VOLTERRA MODEL APPLIED TO URBAN
AND REGIONAL SCIENCES

Prey < average income of studied micro area <> supply
Predator «» population of studied micro area «» demand

In sum: the population “catches” the average income
or
there are dynamical interactions between demand
(predator) and supply (prey)

ANALYTICAL MODELS OF SPACE DEBRIS IN LOW
EARTH ORBIT

Big objects: satellites <> prey
Small objects: debris <= predator



SIMPLE MODEL FOR THE EVOLUTION OVER
TIME OF ALL ORBITING BODIES

N = number of orbiting bodies

A= “deposition” coefficient (it is articulately “modelled”, with a series of experimental “sub-coefficients”.
It is connected to the number and type of rocket launches)

B = “removal” coefficient (it is “modelled” as follows):

B =Bum + S, with B.m = fraction of bodies that fall under natural causes (residual atmosphere)
B ~—56x1073
one could also immediately ¢ S =  fraction of bodies that fall under active removal systems = 0
write - BNV !
C= “collision” coefficient (it is “modelled” in a complex way, both by means of technical considerations,

Kinetic theory of gases, and of experimental data)

MODEL FOR THE EVOLUTION OVER TIME OF TWO
POPULATIONS OF SPACE BODIES
(SATELLITES — S — AND DEBRIS - F)

big objects small objects
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In this case, one can view the problem as an interaction between two populations of animals that
are, however, cannibals i.e., they are self-destructive populations both subject to “hunt” and to
repopulation by an external agent.

One population can be seen as “prey” satellites, and the other as “predator” debris.

The preys-satellites are those bigger than a certain threshold, and they are hunted by the
predator-debris, which are smaller. However, the species are cannibals i.e., there can be
interaction between elements of the same species: debris have as preys not only the bigger
satellites, but also the debris themselves. At the same time, bigger satellites can destroy “one of
their own”, but not a debris. Moreover, both species are subject to “hunting” by the Earth’s
atmosphere that acts upon then, and a deposition term is present in both of the species equations.
This term will depend on the human activity of orbit launch.
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EPIDEMIOLOGICAL MODEL (Kermack, McKendrick: 1927)
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R i.e., births, deaths (for
EL‘"“ = \“ 1 ) Rlo)=R, 20 other causes) and
d T migratory flows are
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The first two equations do not depend on R: therefore, they can be
solved separately e.g., by dividing the second by the first (assuming

that S and I # 0):
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Ultimately, the following trend is obtained:
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—» (not to have)  (i.e., an epidemic trend of the contagious disease)

In order to have an infection, it must happen that

_— o .

§0>\f; =2 ,SK‘>¢/>\Q>1

Yo < h = Ro2A oo \> Defining this quantity:

H,o-—'- So_K. RASIc
h REPRoOUC T IO
Vomeer

We observe that Ry can be estimated (see net reproduction number of the

the table) and these estimates are referred to disease

a population without vaccine coverage. i

However, 1? we glve the VEICCII?G to part p of reproductive rate of infection in
the population (i.e., a “proportion” p the population

(> fraction of vaccinated people) smaller i

than 1, of the population: for instance, if it is an indicator of the
P=0.3 this means that 30% of the population maximum disease spread
gets the vaccine), this modifies S, that potential
becomes (1- p)Sy. Therefore, in this case i

1.€., by vaccinating a part p of the population
> O g4p Iz P p, . N.B. Basically, this number
(to be defined) there won’t be an epidemic i represents, on average, how

. explained
if in paper many individuals a contagious

nr.3 individual can infect

For example Article Book
(/( Y\> S < L\ ——> Q’( -0 ) fo < A = “Prisma” Barnes,
- . - Fulford
is the condition in Infection Ry Ry
= (’( Y‘) K < A => K (/, order to remove the
vV infection i.e., so as not Smallpox 5-17 4
"""" to spread the disease
‘ Measles and 12-8 16 — 18
Defining this quantity R,: pertussis
REAL REPRODUCTION = (12001;) : . —
NUMBER o
Mumps 4
l / Chickenpox 10-12

Since based on experimental data (pre-vaccination era) we
know the values of R, we can estimate the vaccine
coverage required to curb the infection:



LORENZ ATTRACTOR (1917-2008)

Text translated from: G.BORGIOLI “modelli matematici di evoluzione ed equazioni differenziali” pp. 86-88, ED.

CELID, 1996

We will look at one of the best-known mathematical models in
nonlinear dynamics that show instances of chaotic behavior.
Thanks to E.N.Lorenz’s theorization, this model is a simple
system of three autonomous first-order differential equations
that exhibit quadratic non-linearity (as in the predator-prey
model, for instance). The physical phenomenon described is the
thermal convection of an incompressible, viscous fluid in a
rectangular plane region (cell) positioned vertically (Fig.4.19).

The system of ordinary equations
is obtained by starting from the
“exact” model, which is built ,_\ (

from a system of partial .
differential equations (the Navier- ‘\}
trrt bttt

AT = constant

Stokes equations), where the
variables (unknowns) include the
velocity field of the fluid,
temperature, etc. By applying a
Fourier series expansion to the
unknown functions and truncating
the series, the system is derived.

Fig.4.19

The partial differential equations are transformed into ordinary
equations, where the unknowns are the coefficients of the
Fourier expansion up to the considered order. In this case, we
disregard the (infinite) terms beyond a certain order because
we expect the solution (eventually, after a transient period) to
oscillate only according to certain vibrational modes, while the
remaining ones are essentially negligible.

X=-oX-Y)
Y=RX-Y-XZ

d e (4.29)
Z=XY—-bZ

X is the coefficient of the first term for flow development (a scalar
function that, under the assumption of a plane system invariant with
respect to the third spatial coordinate, replaces the velocity vector field);
Y is the first coefficient for temperature development, and Z describes
temperature’s vertical pattern. The coefficients ¢ (the Prandtl number)
and R (the dimensionless Reynolds number) characterize the physical
properties of the fluid, b is a parameter related to the geometric
characteristics of the cell.

According to Lorenz’s expectations (and those who preceded him in
attempting to derive approximate models of the Navier-Stokes
equations), equation (4.29) was supposed to be a “simple” model for
studying atmospheric convection motions and, therefore, an important
milestone in the development of “deterministic” weather forecasts.

For an extensive analysis of the properties of the system (4.29) (see 22,
Chapter 11), aside from the equilibrium solution (0, 0, 0), one can easily
determine other two additional equilibrium solutions. Keeping o and b
fixed, one can study their respective stability properties at the variation
of R (increasing values of R correspond, for instance, to a greater thermal
gradient between the two horizontal faces of the cell, leading to a more
significant convective flow). For values R = 28, all equilibrium solutions
become unstable, and for all the considered evolution solutions, an
extreme sensitivity with reference to the initial data was observed (they
exponentially move away from each other). However, for all the initial
conditions considered, the evolution asymptotically converges to an
invariant region of the phase space (X, Y, Z). This region exhibits an
extremely complex geometric structure (known as fractal) and has been
identified as the chaotic Lorenz attractor (often referred to as “butterfly
wings” due to its characteristic shape). The consequences of this result
for predicting a later stage of the system with fixed precision are rather
catastrophic since, as mentioned earlier, the uncertainty (measurement
error) in the initial state spreads to later stages with exponential growth
over time.

The resulting implications on weather forecasts, assuming that
real air turbulence exhibits the same sensitivity to initial values,
were discussed by Lorenz in his works from 1963 and 1964. In
fig. 4.20 you can see the projection of the attractor onto the plane
(X)Y) generated using PHASER [14].

Fig. 4.20

Some of the most defining aspects of nonlinear differential equations
include the following: First, in general, it is not possible to explicitly obtain
the solution of an initial value problem (IVP) for a nonlinear system in
terms of elementary functions. Once the existence and uniqueness of the
solution are established (see Chapter 5), a qualitative approach becomes
the only viable method for understanding its properties, using both rigorous
mathematical analysis and numerical simulations. mong the most
interesting characteristics, already observable in two-dimensional systems,
is the possibility of periodic asymptotic solutions (limit cycles), even in
unforced systems (Van der Pol equation). Solutions of chaotic type can
appear starting from dimension 3 (equation of forced pendulum, Duffing
equation, Lorenz model).

This aspect of nonlinear dynamics has gained increasing popularity in
recent times and has been presented here in a purely phenomenological
manner. In this context, we observe that even in completely deterministic
systems (to each possible initial data corresponds one and only one
solution), determinism itself faces a crisis when chaotic solutions arise.
Specifically, measurement errors in the initial conditions spread rapidly,
making it impossible to achieve exact long-term predictions about the
system’s state.

Lorenz
attractor

Figures taken
from
A.Vulpiani
“Determinis
mo e Caos”,
Ed.Carocci,
2004

c and ¢’ are

unstable equilibrium points

X(t) as a function of ¢ for the Lorenz model with =10, b=8/3 and =28
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For example:
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EX (1)

or

R=15
o=5
b=1




Partial Differential Equations: PDEs

PDEs — infinite solutions

PDEs + complementary conditions = one solution only
(under regularity conditions for the unknown functions)

initial conditions + boundary conditions
for hyperbolic and parabolic equations
(i.e., diffusion equation, wave equation)

complementary k Y. Py 52

conditions L —T(x,1)= = =
ot pc Ox* or’ ox”

boundary conditions
for elliptic equations

(i.e., Poisson equation and Laplace equation)

o —OD(x, )+—82 D(x, )———1 o(x,y) o —d( )—|——52 D(x,y)=0
X X,
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Partial Differential Equations: PDEs

initial conditions + boundary conditions
for hyperbolic and parabolic equations
(i.e., diffusion equation, wave equation)
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[t arises from a thermal balance when T [t represents vibratory phenomena,

1s temperature. It is commonly known as waves that propagate. It was

heat equation or Fourier equation. discovered by D’ Alambert vibrating

If T represents concentration, it describes strings.

the diffusion of a diluted substance (gas This equation describes transverse

or liquid) in an homogeneous dispersing waves of small amplitude in a

phasem, which is typical in solutions. In string, waves in an elastic

this case, 1t 1s referred to as Fick's membrane, sound waves and also

equation, where mass diffusivity replaces electromagnetic waves in a vacuum.

thermal diffusivity (&/(pc)).



Partial Differential Equations: PDEs

boundary conditions
for elliptic equations
(i.e., Poisson equation and Laplace equation)
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It represents the non-homogeneous
version of the Laplace equation. It can
describe a membrane subject to a force
density, a thermal field with source, an
electric field in the presence of a charge
density (it 1s important in many
electrostatic problems, just as its
homogeneous version is)

o

It 1s also known as potential equation.

It can yield static solutions (stationary:
solution that no longer depends on time)
of the D’ Alambert equation or the heat
equation. It can describe stationary
thermal fields, electrostatics problems in
2-D, 2-D motions of perfect
incompressible fluids.



Random Variable (Aleatory)

Definitions, observations and main properties



RANDOM VARIABLE (ALEATORY)

— > A FIRST DEFINITION:

A finite set or
/ infinite countable =»| discrete

\ set a.Vv.
+

continuous set =N continuous

XS snce

a.Vv.
—> discreteay. ¢y _ P PROBABILITY Loy s
N ) FUNCTION ,
Definition =, £ix. Ve
- - p CUMULATIVE
Al I (Xéx}: [ (x) DISTRIBUTION \
n aleatory variable 1s theretore a FUNCTION 1\: ( X ) _ 5\ ?(x‘)

number that is assigned to each point of
the sample space 1.e., to each of the !———/———\\ ' X <x
possible outcomes of an aleatory . . . ‘ .
F (x) is also called distribution function of the a.v. X (denoted as X~F) and it represents the

experiment, by means of a specific rule. “
probability that X adopts a value < x.

This definition is also valid for continuous a.v.
Additionally, note that all probability-related problems involving an a.v. can be solved in

terms of its distribution function F.



CHARACTERISTIC INDEXES OF A RANDOM VARIABLE

9 EXPEC(;I;ATION (MEAN)
IT IS A POSITION
INDEX EXPECTED VALUE

IT IS ALSO DEFINED AS:
EXPECTATION, MEAN OR
MATHEMATICAL EXPECTATION

(it represents the P <
expected value that t X > § C . DISCRETE
can be obtained in a >< — ol > if AV.
large number of
tests)
itean be J ﬁ OO % if { CONTINUOUS
it is often expressed with u A.V.
(in measure theory p is referred to as MEASURED VALUE)
T where X a.v. is a measurement of a physical parameter
ITIS A VARIANCE
VARIABILITY  —
INDEX
(it indicates how \ o
“dispersed”the 2\ < W . _ '
values of the a.v. \/ / . [ /(4> F( X__ s > - Z T DISCRETE
relatively to its B ( >< = { T /T <X“—~ ) (¥ if
X M X, ) AV.
mean value are) K I
it can
( X< CONTINUOUS M. B
,Jdo A J‘QOQC{X if AV. ——
G- - )
in measure theory it is referred (X ) - U‘m (X )
to as MEASUREMENT < ROOT-MEAN-
WE NOTICE THAT: UNCERTAINTY SQUARE A STANDARD
DEVIATION DEVIATION OF
AV.X /
—> Vi ( X> - < (X 3 'z_ )
~> Ven (LLX)“Q-\/MCX) | o (X)= E(X")= E(x)



