
THE LOTKA-VOLTERRA MODELIN N DIMENSIONS (for any N)

Species 𝒾 (𝒾=1,2,…,N) population
Growth rate
Carrying Capacity function for species 𝒾

Competition coefficients between species 𝒾 and 𝛿

LOTKA-VOLTERRA MODEL APPLIED TO URBANAND REGIONAL SCIENCES
Prey ↔ average income of studied micro area ↔ supplyPredator ↔ population of studied micro area ↔ demand
In sum: the population “catches” the average incomeorthere are dynamical interactions between demand(predator) and supply (prey)

ANALYTICAL MODELS OF SPACE DEBRIS IN LOWEARTH ORBIT
Big objects: satellites ↔ preySmall objects: debris ↔ predator



SIMPLE MODEL FOR THE EVOLUTION OVERTIME OF ALL ORBITING BODIES

MODEL FOR THE EVOLUTION OVER TIME OF TWOPOPULATIONS OF SPACE BODIES(SATELLITES – S – AND DEBRIS – F)big objects small objects

N = number of orbiting bodies
A = “deposition” coefficient (it is articulately “modelled”, with a series of experimental “sub-coefficients”.It is connected to the number and type of rocket launches)
B = “removal” coefficient (it is “modelled” as follows):

B = Batm + S, with Batm = fraction of bodies that fall under natural causes (residual atmosphere)≈− 5.6 × 10−3S = fraction of bodies that fall under active removal systems ≈ 0

C = “collision” coefficient (it is “modelled” in a complex way, both by means of technical considerations,Kinetic theory of gases, and of experimental data)

{N.B.one could also immediatelywrite - BN !

In this case, one can view the problem as an interaction between two populations of animals thatare, however, cannibals i.e., they are self-destructive populations both subject to “hunt” and torepopulation by an external agent.One population can be seen as “prey” satellites, and the other as “predator” debris.The preys-satellites are those bigger than a certain threshold, and they are hunted by thepredator-debris, which are smaller. However, the species are cannibals i.e., there can beinteraction between elements of the same species: debris have as preys not only the biggersatellites, but also the debris themselves. At the same time, bigger satellites can destroy “one oftheir own”, but not a debris. Moreover, both species are subject to “hunting” by the Earth’satmosphere that acts upon then, and a deposition term is present in both of the species equations.This term will depend on the human activity of orbit launch.



(Kermack, McKendrick: 1927)EPIDEMIOLOGICAL MODEL
HYPOTHESIS
1) The infectedimmediately becomescontagious;2) The disease givesimmunity3) N= S+I+R= constanti.e., births, deaths (forother causes) andmigratory flows aredisregarded

The first two equations do not depend on R: therefore, they can besolved separately e.g., by dividing the second by the first (assumingthat S and I ≠ 0):

Ultimately, the following trend is obtained:
NONEPIDEMICTREND EPIDEMICTREND Please note that:

In other terms, there is anepidemic trend or epidemicspread if I(t) is increasing.On the contrary, if I(t) isdecreasing, this means that theepidemic has been overcome

THRESHOLDVALUE
(I(S) has themax)NONEPIDEMICSPREAD EPIDEMICSPREAD



In order to have an infection, it must happen that
(not to have) (i.e., an epidemic trend of the contagious disease)

Defining this quantity:

We observe that R0 can be estimated (seethe table) and these estimates are referred toa population without vaccine coverage.However, if we give the vaccine to part p ofthe population (i.e., a “proportion” p(à fraction of vaccinated people) smallerthan 1, of the population: for instance, ifp=0.3 this means that 30% of the populationgets the vaccine), this modifies S0 thatbecomes (1- p)S0. Therefore, in this casei.e., by vaccinating a part p of the population(to be defined) there won’t be an epidemicif

net reproduction number of thedisease

reproductive rate of infection inthe population

it is an indicator of themaximum disease spreadpotential

Basically, this numberrepresents, on average, howmany individuals a contagiousindividual can infect
For example Article“Prisma” BookBarnes,FulfordInfection R0 R0
Smallpox 5 – 7 4
Measles andpertussis(book)

12 – 8 16 – 18

Flu (a strainof) 2 3 – 4
Mumps 4

Chickenpox 10 – 12

N.B.It isexplainedin papernr.3

is the condition inorder to remove theinfection i.e., so as notto spread the disease
Defining this quantity Rv:REAL REPRODUCTIONNUMBER

Since based on experimental data (pre-vaccination era) weknow the values of R0, we can estimate the vaccinecoverage required to curb the infection:



c and c’ are

LORENZ ATTRACTOR (1917-2008)
Text translated from: G.BORGIOLI “modelli matematici di evoluzione ed equazioni differenziali” pp. 86-88, ED.CELID, 1996

We will look at one of the best-known mathematical models innonlinear dynamics that show instances of chaotic behavior.Thanks to E.N.Lorenz’s theorization, this model is a simplesystem of three autonomous first-order differential equationsthat exhibit quadratic non-linearity (as in the predator-preymodel, for instance). The physical phenomenon described is thethermal convection of an incompressible, viscous fluid in arectangular plane region (cell) positioned vertically (Fig.4.19).

The partial differential equations are transformed into ordinaryequations, where the unknowns are the coefficients of theFourier expansion up to the considered order. In this case, wedisregard the (infinite) terms beyond a certain order becausewe expect the solution (eventually, after a transient period) tooscillate only according to certain vibrational modes, while theremaining ones are essentially negligible.

X is the coefficient of the first term for flow development (a scalarfunction that, under the assumption of a plane system invariant withrespect to the third spatial coordinate, replaces the velocity vector field);Y is the first coefficient for temperature development, and Z describestemperature’s vertical pattern. The coefficients 𝜎 (the Prandtl number)and R (the dimensionless Reynolds number) characterize the physicalproperties of the fluid, b is a parameter related to the geometriccharacteristics of the cell.According to Lorenz’s expectations (and those who preceded him inattempting to derive approximate models of the Navier-Stokesequations), equation (4.29) was supposed to be a “simple” model forstudying atmospheric convection motions and, therefore, an importantmilestone in the development of “deterministic” weather forecasts.For an extensive analysis of the properties of the system (4.29) (see 22,Chapter 11), aside from the equilibrium solution (0, 0, 0), one can easilydetermine other two additional equilibrium solutions. Keeping 𝜎 and bfixed, one can study their respective stability properties at the variationof R (increasing values of R correspond, for instance, to a greater thermalgradient between the two horizontal faces of the cell, leading to a moresignificant convective flow). For values𝑅 ≅ 28, all equilibrium solutionsbecome unstable, and for all the considered evolution solutions, anextreme sensitivity with reference to the initial data was observed (theyexponentially move away from each other). However, for all the initialconditions considered, the evolution asymptotically converges to aninvariant region of the phase space (X, Y, Z). This region exhibits anextremely complex geometric structure (known as fractal) and has beenidentified as the chaotic Lorenz attractor (often referred to as “butterflywings” due to its characteristic shape). The consequences of this resultfor predicting a later stage of the system with fixed precision are rathercatastrophic since, as mentioned earlier, the uncertainty (measurementerror) in the initial state spreads to later stages with exponential growthover time.

The system of ordinary equationsis obtained by starting from the“exact” model, which is builtfrom a system of partialdifferential equations (the Navier-Stokes equations), where thevariables (unknowns) include thevelocity field of the fluid,temperature, etc. By applying aFourier series expansion to theunknown functions and truncatingthe series, the system is derived.

For example:R=28𝝈=10b=𝟖𝟑
or
R=15𝝈=5b=1

The resulting implications on weather forecasts, assuming thatreal air turbulence exhibits the same sensitivity to initial values,were discussed by Lorenz in his works from 1963 and 1964. Infig. 4.20 you can see the projection of the attractor onto the plane(X,Y) generated using PHASER [14].

unstable equilibrium points

Lorenzattractor Figures takenfromA.Vulpiani“Determinismo e Caos”,Ed.Carocci,2004

X(t) as a function of t for the Lorenz model with 𝜎=10, b=8/3 and r=28

Some of the most defining aspects of nonlinear differential equationsinclude the following: First, in general, it is not possible to explicitly obtainthe solution of an initial value problem (IVP) for a nonlinear system interms of elementary functions. Once the existence and uniqueness of thesolution are established (see Chapter 5), a qualitative approach becomesthe only viable method for understanding its properties, using both rigorousmathematical analysis and numerical simulations. mong the mostinteresting characteristics, already observable in two-dimensional systems,is the possibility of periodic asymptotic solutions (limit cycles), even inunforced systems (Van der Pol equation). Solutions of chaotic type canappear starting from dimension 3 (equation of forced pendulum, Duffingequation, Lorenz model).This aspect of nonlinear dynamics has gained increasing popularity inrecent times and has been presented here in a purely phenomenologicalmanner. In this context, we observe that even in completely deterministicsystems (to each possible initial data corresponds one and only onesolution), determinism itself faces a crisis when chaotic solutions arise.Specifically, measurement errors in the initial conditions spread rapidly,making it impossible to achieve exact long-term predictions about thesystem’s state.

Fig. 4.20
Fluid

heat

∆𝑇 = constant



Partial Differential Equations: PDEs
PDEs Þ infinite solutions
PDEs + complementary conditionsÞ one solution only(under regularity conditions for the unknown functions)

initial conditions + boundary conditionsfor hyperbolic and parabolic equations(i.e., diffusion equation, wave equation)complementaryconditions t
boundary conditionsfor elliptic equations(i.e., Poisson equation and Laplace equation)



Partial Differential Equations: PDEs
initial conditions + boundary conditionsfor hyperbolic and parabolic equations(i.e., diffusion equation, wave equation)

 T (x, t) =
 t

k  2
rc  x2 T (x, t)  2

 t2 A(x, t) = c2  2
 x2 A(x, t)

It arises from a thermal balance when Tis temperature. It is commonly known asheat equation or Fourier equation.If T represents concentration, it describesthe diffusion of a diluted substance (gasor liquid) in an homogeneous dispersingphasem, which is typical in solutions. Inthis case, it is referred to as Fick'sequation, where mass diffusivity replacesthermal diffusivity (k/(rc)).

It represents vibratory phenomena,waves that propagate. It wasdiscovered by D’Alambert vibratingstrings.This equation describes transversewaves of small amplitude in astring, waves in an elasticmembrane, sound waves and alsoelectromagnetic waves in a vacuum.



Partial Differential Equations: PDEs
boundary conditionsfor elliptic equations(i.e., Poisson equation and Laplace equation)

 2
 x2 F( x, y) +  2

 y2 F(x, y) = - 1
e0

r( x, y)  2
 x2 F(x, y) +  2

 y2 F(x, y) = 0

It represents the non-homogeneousversion of the Laplace equation. It candescribe a membrane subject to a forcedensity, a thermal field with source, anelectric field in the presence of a chargedensity (it is important in manyelectrostatic problems, just as itshomogeneous version is)

It is also known as potential equation.It can yield static solutions (stationary:solution that no longer depends on time)of the D’Alambert equation or the heatequation. It can describe stationarythermal fields, electrostatics problems in2-D, 2-D motions of perfectincompressible fluids.



Random Variable (Aleatory)
Definitions, observations and main properties



RANDOM VARIABLE (ALEATORY)

A FIRST DEFINITION:
finite set orinfinite countableset

continuousa.v.

discretea.v.
continuous set

discrete a.v. PROBABILITYFUNCTION
CUMULATIVEDISTRIBUTIONFUNCTION

Definition
An aleatory variable is therefore anumber that is assigned to each point ofthe sample space i.e., to each of thepossible outcomes of an aleatoryexperiment, by means of a specific rule. F x is also called distribution function of the a.v. X (denoted as X~F) and it represents theprobability that X adopts a value ≤ x.This definition is also valid for continuous a.v.Additionally, note that all probability-related problems involving an a.v. can be solved interms of its distribution function F.



it is often expressed with 𝜇(in measure theory 𝜇 is referred to as MEASURED VALUE)

EXPECTATIONorEXPECTED VALUE

CHARACTERISTIC INDEXES OF A RANDOM VARIABLE

IT IS A POSITIONINDEX(it represents theexpected value thatcan be obtained in alarge number oftests) it can be ⋚ 0
where X a.v. is a measurement of a physical parameter

VARIANCEIT IS AVARIABILITYINDEX(it indicates how“dispersed”thevalues of the a.v.relatively to itsmean value are) it canbe ≥ 0

(MEAN)
IT IS ALSO DEFINED AS:EXPECTATION, MEAN ORMATHEMATICAL EXPECTATION

if DISCRETEA.V.
CONTINUOUSA.V.if

if DISCRETEA.V.

WE NOTICE THAT:

that is:

if CONTINUOUSA.V.
in measure theory it is referredto as MEASUREMENTUNCERTAINTY ROOT-MEAN-SQUAREDEVIATION

STANDARDDEVIATION OFA.V. X
⇑


